Уважаемые партнеры! Приглашаем вас принять участие в маркетинговой акции Yealink «Бонус на связи!». Период действия акции: 01 декабря 2025 г. – 31 декабря 2025 г. – За закупку IP-телефонов и гарнитур Yealink вам будут начисляться бонусы. – Для каждой модели предусмотрен ...
Уважаемые партнеры! Treolan предлагает вам принять участие в программе по продукции Netac. Совершая покупку продукции Netac в Treolan, вы можете получить подарочные сертификаты федеральных сетей на ваш выбор. Для участия в программе необходимо зарегистрироваться
Предновогодняя распродажа Datalogic стартовала! Специальное предложение до конца 2025 года — на ручные и стационарные сканеры Datalogic действуют эксклюзивные цены! Прямо сейчас к оперативной отгрузке со склада PROWAY доступны: Ручной беспроводной сканер Datalogic QuickScan QBT2500-BK-BTK1 Данная ...
Получите кешбэк 5% на закупку новых моделей корпусов CBR до 8 декабря: CBR V201 — 260 x 165 x 353 мм, 2×HDD + 2×SSD, видеокарта до 250 мм, 2×USB 2.0; CBR V203 — 260 x 165 x 353 мм, 2×HDD + 2×SSD, видеокарта до 250 мм, USB 2.0, USB 3.0; CBR V205 — 260 x 165 x ...
Уважаемые партнеры! Приглашаем вас принять участие в промопрограмме по продукции НИИ «Масштаб». Покупая хотя бы одну лицензию виртуализации, а также любые другие решения НИИ Масштаб в Treolan, вы получаете подарочный сертификат на ваш выбор. Для участия в программе необходимо зарегистрироваться
Сегодня большие языковые модели (LLM) становятся основой для целых классов продуктов — от интеллектуальных ассистентов до аналитических систем и рекомендательных движков. Крупные корпорации повсеместно внедряют масштабные LLM, но быстро сталкиваются с проблемами: развитие и поддержка таких моделей требуют огромных мощностей и устойчивости системы. Александр Кротов, эксперт в области оптимизации нейросетевых инфраструктур, рассказал о том, какие подходы использовать в масштабных LLM-проектах, и какие инструменты помогут сохранить стабильность системы. В чем проблема использования LLM в корпорациях Крупные компании ежедневно оперируют тысячами процессов. Если выполнять их вручную, это займет массу времени — и не исключены ошибки из-за человеческого фактора. Одна ошибка не будет стоить слишком дорого, но если каждый день их сотни, то это значительно скажется на общей выручке. Поэтому корпорации используют масштабные LLM, чтобы автоматизировать процессы и минимизировать человеческий фактор. AI-агенты могут применяться как для простых задач — например, суммаризации документов, ответов на простые обращения или генерации контента — так и для сложных последовательностей действий (tool calls). Они тоже могут ошибаться, но на этот раз более-менее стабильно, одинаково при обучении и в продакшене. Так, LLM могут запускать внутренние скрипты, запрашивать базы данных, управлять CRM, создавать задачи в Jira или анализировать отчёты BI. По сути, модели становятся универсальным интерфейсом к ... читать далее.