Уважаемые партнеры! Приглашаем принять участие в акции «Сделай Новый год ярче!». Вас ждет двойной бонус за закупку телевизоров Digma, Hyundai, Starwind. Период действия акции: 01.12 — 31.12.25 г. Условия акции: — Бонус до 5% начисляется за закупку любых телевизоров Digma, Hyundai, Starwind на ...
До конца 2025 года на всё оборудование BIXOLON со склада PROWAY действуют эксклюзивные цены! Рекомендуем обратить внимание на модели: • SLP-DX220DG – Компактный принтер прямой термопечати для курьеров и мобильной торговли. Разрешение печати: 203 dpi Скорость печати: 152 мм/с Интерфейс ...
Уважаемые партнеры! Компания Treolan приглашает партнеров к участию в акции на программные решения вендора МТС Линк. Достигайте целевых показателей продаж и выигрывайте технологичные призы от компании Treolan! Для участия в программе необходимо зарегистрироваться
Уважаемые партнеры! Treolan предлагает вам принять участие в программе по продукции OpenYard! Совершая покупку продукции OpenYard в Treolan, вы можете получить подарочные сертификаты федеральных сетей на ваш выбор. Для участия в программе необходимо зарегистрироваться
Получи бонус в размере 10% от закупки акционных товаров A4Tech (см. табл.1 на сайте). Чтобы получить бонус, необходимо выполнить условия программы, а также зарегистрироваться, указав свои данные: ФИО, наименование компании, код клиента. Бонусы будут начислены в течение месяца после ...
На периферии важное значение имеет задержка, а для эффективной работы искусственного интеллекта и машинного обучения требуется много данных. О том, что это значит для рабочих нагрузок ИИ/МО, рассказывают опрошенные порталом Enterprisers Project эксперты. Периферия имеет значение там, где важна задержка, и наоборот. А задержка почти всегда имеет значение, когда речь идет о рабочих нагрузках ИИ/МО. «Хороший ИИ требует данных. Великому ИИ требуется много данных, и он требует их немедленно», — говорит Брайан Сатианатан, технический директор Iterate.ai. Это одновременно и благословение, и проклятие для любого сектора — промышленный и производственный являются яркими примерами, — но данный принцип применим во всех отраслях бизнеса, генерирующего тонны машинных данных вне своих централизованных облаков или дата-центров и намеревающегося передавать их в модель MО или другую форму автоматизации для любых целей. Работаете ли вы с данными IoT на заводе или с данными медицинской диагностики в учреждении здравоохранения — или с одним из многих других сценариев, в которых применяются ИИ/МО, — вы, вероятно, не сможете делать это оптимально, если будете пытаться отправлять все (или почти все) данные по кругу от периферии до облака и обратно. Более того, если вы имеете дело с огромными объемами данных, ваша затея может так и не начаться. «Я видел ситуации на производстве, когда „слишком много“ данных проходит от робота в цеху через локальную сеть, затем в облако и обратно, — рассказывает ... читать далее.